|
Application Note 140

ﬂ= DALLAS Using Multiple DS1267 Digital Potentiometers With
¥ SEMICONDUCTOR an 8051 Microprocessor Generating 3-Wire Signals

www.dalsemi.com

INTRODUCTION

Dallas Semiconductor’s DS1267 Digital Potentiometers are ideal for systems requiring Digital to Analog
Converters (DAC), or systems that need a programmable bias current, voltage, or resistance without the
human intervention required by a traditional mechanical potentiometers. The DS1267 provides two digital
potentiometers in one package. A unique 3-wire protocol allows several of these chips to be placed in series
or in parallel. An optional stacked configuration allows the chip’s two 8-bit potentiometers to be placed in
series, providing 9-bit accuracy. The DS1267 can be used in dual supply systems with an input range
between -5V and +5V as long as the substrate bias voltage is below the lowest input voltage used.

This application note provides an overview of different configurations for communicating to multiple
DS1267s with a common bus. It also provides the hardware and software required for communicating to
two DS1267s daisy-chained together in a series.

HARDWARE SETUPS FOR COMMUNICATION WITH A DS1267

There are two primary ways that a 3-Wire bus can be connected to communicate with multiple chips. The
devices can either be connected in series, or in parallel. For either type of connection, 17 bit blocks of data
will be written to the part(s) at a time. The data will determine the position of the potentiometer wipers and
the stack output each time that the reset is de-asserted.

Series

A standard series connection is shown in figure 1 below. This method of connection works with
microprocessors that have bidirectional ports that are high impedance when expecting input. This allows the
feedback resistor to be used to drive the DQ pin from the COUT of the last device in the daisy chain. If it is
not desirable to read from the part, then the isolation resistor can be omitted. This method allows an
indefinite number of chips to be placed in series.

Hroro ST SE7 L PST2E7 L PST2E7
I-.01 RST RST RST
L1702 DO COUT[—DOQ COUT—DOQ COUT -
1,03 l CLE l_ CLE |— CLE '
] s e S L a

Figure 1 —Three DS1267s Connected in Series with a Feedback Resistor for Reading the Shift Register

Note: The feedback resistor should be approximately 10kQ to provide adequate isolation between 1/O pin-2
and COUT when 1/O pin-2 is driving DQ.

The second method of serial connection (Figure 2) must be used for microprocessors that have open-
collector 1/0O ports. On an open collector port, there is either an internal (true of the 8051 microprocessor) or
external pull-up resistor that allows a high signal to be produced without a high side driver. This is typically
done to eliminate the possibility that the microprocessor will be in contention with some external device
connected to it. If an isolation resistor were connected between COUT and DQ as shown in Figure 1, then it

10f 20 021401

App Notel40
would cause errors during write cycles to the part whenever COUT is attempting to drive the DQ pin low,
because COUT will out-drive the weak pull-up resistor. The setup shown in Figure 2 allows the shift
register in the DS1267 to be read using one additional pin for input only on an open collector port. Typical
3-wire signals control the DS1267 as before.

Niors DSTIE 7T L DEFIET L DT AE 7T
0UT1 RS5T RST RST
ouT2 DO COUT — DO COUT—DQ COUTf-
ouT2 CLK CLE CLE '
TN | i [

Figure 2 — Series Connection of DS1267s with a Separate Input Used to Read from the Shift Register

In both series connection cases, the feedback from the DS1267 can be omitted, and it will only require three
wires to write to as many DS1267s as desired. If the status of the potentiometer must be known at a later
time, 2 bytes of RAM will have to be devoted to keep track of the values written to each DS1267 attached to
the bus. The main downfall of the series method is that n DS1267s on serial bus take n times as long to
write to or read from as a single chip does.

Parallel

The second class of setup is a parallel configuration. Figure 3 shows a parallel setup that can be used to
write to several DS1267s with DQ and CLK in common and separate RST signals. The advantage of this
system is that it requires only 17 DS1267 clock cycles to write to any part being used. The disadvantage is
that it requires one additional output pin per additional DS1267. If several DS1267s and high-speed writing
are required, it would be possible to decode an address to produce the reset (chip select) signals with the
addition of a decoder. This would allow the operation of 2% of select pins available) 15792675 Thys, if you had
three 1/0 pins available to decode address, then you could decode them to allow eight DS1267 dual
potentiometers (16 potentiometers in eight packages) to operate with common DQ and CLK signals. If a
decoder was used for the system below, then five more potentiometers could be added without loss of
another output pin.

Xroro J
gg%J DEIFEF L DEL2E7 L PSI2E7
OUT3 RST RST RST
00T4 DO COOT | DO COOT|(—/DQ COOT
OOTS] CLE l_ CLEK |— CLE

Figure 3 — Three Parallel Configured DS1267s Sharing Common DQ and CLK Lines

The setup above does not incorporate any provisions for reading from the DS1267s. If the potentiometers
are to be read in a system using a decoder, then the decoders address lines could be used with a mux to read
all of the COUTSs into either a single bidirectional 1/0 pin or a separate input pin as before.

The hardware setup shown in figure 4 (next page) was used to generate the code in Appendix A. The setup
consists of a DS1075, providing a 22.2 MHz clock for the DS87C520 microprocessor. A DS232A converts
the 5V CMOS signals to RS232 levels for communication between the microprocessor and PC. The
DS232A is connected to a standard serial port plug, which can be connected to a PC to allow feed back from

2 0of 20

App Notel40
the microprocessor at 19200 baud (1 stop bit, no parity, no flow control). The two potentiometers are daisy-
chained (connected in series), and connected to the microprocessor on port 1. The first DS1267 is connected
in the stacked configuration, and is providing a 9-bit DAC. The second DS1267 is providing two 8-bit
DACs. Because they are connected in series, each read and write attempt will involve shifting 2*17 bits.
An LED has also been connected to port 1.0 as a status indicator.

Note: The 8051 has open-collector ports; therefore, a separate input pin must be used for COUT. Using DQ
as a bidirectional port pin will cause communication errors between the microprocessor and the DS1267s.
Also, if the serial port is to be used, the clock rate must be near 22.118 MHz. Failure to have a clock rate
within 2-3% of that frequency can cause serial port communication errors.

DS87C520 Stacked Hon-5Stacked

COUT D51267 ﬂ D51267 ﬂ
P1.7 N
P1.6E=L 1+ TvB vCC mll L01uF |—VE voclH ==0.1uF
P1.5 E%K Hi SOUT 9 hit Hl SOUT|—{NC _
P14t L1131 vo—uc| Dac +—11 W0 a-hit
P1.3 NC+— W1 Hi— | W1 HO{— | DacC
p1 .2 1&D1 — RST L0 L EEE coﬁln"_l 1
CLE COUT|— —
22118MH= L GHD D _+—GHD D)
N':] KT.&I.Z I.ED W —_ - .
XTAL1 P1.0 k7] Eﬁlﬁét
DS1075—66 Luf
I-0 OSCINb—— DS2324
VCC HC—QUTOD XTAL -NC ~ yoo 1 Cl+ Voo 15l
———vCC CEL T 1uF== U7 v+ Gpd 15| IvF
_—{evp /ELN T 15 ¢1- Tis 14ﬂ—
= /SELX (w4 €2+ RIi 131
Econlscillator T.—5 C2- Elo 12—
DEY —¢ V- T1i 11
Connector 1uF —7 TZ2o Tz21 10
: 8 R?i R2a 9
HC &g 27 1
H': E 4"—N': ’7
NC17 3
HC =g,

1=—-HC

Figure 4 — DS87C520 Microprocessor with DS1075 Clock, DS232A Serial Port Transmitter, and
Two DS1267s Daisy-Chained on a 3-Wire Bus

3-Wire Protocol

The 3-wire protocol is a simple protocol to program the DS1267’s two potentiometers via a 17-bit shift
register. The shift register is controlled with the reset, data, and clock signals. Reset (RST) is used to select
the chip. This signal is active high, and must be asserted during any attempt to write to or read from the part.
The data pin (DQ) is used to transfer data to the part. Once the data is correctly placed on DQ, the clock
signal (CLK) is pulsed to synchronize the data transfer. The timing for these events is shown in the DS1267
data sheet. Data that is shifted into the part can continue being shifted through to another 3-wire device with
the cascade output (COUT.) The cascade output can also be routed back to the controller to allow a
microprocessor to read what it has written.

The data format for two devices connected in series is shown in Figure 5.

30f 20

App Notel40

DS1267 #1, Stacked DS1267#2, Hot Stacked
Potentiometer 0 | Potentiometer 1 S Fotentiometer ? | Potentiometer 3 =
Do (L H|L H T#1 CouT (L H|L H|rgo| COUT
—*|5S+—f-hit=—® 5|5 =—3-hit=—* 5 K »5 +—f-hit=—* 55 +=—8-hits—= 5 E |/
B E|B B B E|B B
1-bit 1-bit

Figure 5 — Two 17-Bit DS1267 Shift Registers Cascaded Together for Series Operation

In this configuration, the first bit shifted into the register is shifted all the way to the end. Thus, the first bit
that is placed on DQ at the beginning of data transfer would be STK#2. This is the stack control bit for
DS1267 #2. The next 8-bits that will be sent are the 8-bits that control the position of wiper 1, on DS1267
#2, labeled potentiometer 3 on the diagram. Notice that the MSB of the byte is sent to the part first. Then
the next 8-bits will control potentiometer 2. The next bit sent will be STK#1, which controls the stack
output of DS1267 #1. The bytes for Potentiometers 1 and 0 will follow the stack control bit respectively. If
only one chip were connected on the bus, then only 17-bits of data would be communicated to the part, but
the data would be in the same format as shown in the first half of figure 5.

To write the 17 bits out to one of the DS1267s, the following procedure must be performed:

1) Assert RST (high)

2) Place a data bit on DQ pin

3) Pulse CLK

4) Repeat steps 2) and 3) 16 more times
5) De-assert RST (low)

If n DS1267s are cascaded together, then steps 2) and 3) are performed n x 17 times before RST is de-
asserted.

If the optional feedback resistor has been used with bi-directional port, the values stored in the shift register
are read by accomplishing the following:

1) Assert RST, and place 1/0O pin-2 in a high impedance state.

2) Read 1/0 pin-2 (equal to COUT if 1/0 pin-2 is in a high impedance state).
3) Pulse CLK.

4) Repeat steps 2) and 3) 16-times more times.

5) De-assert RST.

To read from the part that is has COUT connected to a separate input, the following sequence must be
completed:

1) Assert RST.

2) Read COUT at the input pin.

3) Write value of COUT to DQ.

4) Pulse CLK.

5) Repeat 2), 3), and 4) 16 more times.
6) De-assert RST.

Note: The value of COUT must be written back to DQ, because there is no difference in the operation of the
reset and clock signals between a read and a write attempt. Thus, COUT is being written back into DQ as
was done by the hardware in figure 1. Also, if n DS1267s are attached in series, then sequences 2), 3), and
4) must be performed n x 17 times, or the DS1267s will not have the same data in them as when the read
routine was begun.

4 of 20

App Notel40

Controlling Two DS1267s Using Software Generated 3-Wire Communication

Main 3-Wire Communication Routines

The method of communicating to the DS1267 described in the 3-Wire Protocol section is accomplished in
code by four routines. These routines are used to write 34 bits, read 34 bits, serialize the bytes of data to be
sent to each potentiometer, and reconstruct the bits of data received from the potentiometer into bytes. The
former two routines call the later two respectively. The code is located in Appendix A, and brief
descriptions of these routines are listed below.

WritePots3
This routine is the master writing routine. It writes the stack control bits stored in the memory locations
called stackl and stack2, and it writes out all of the data to the potentiometers with the WriteBits3 routine.
The data that is to be written out to the DS1267s is stored in 4 bytes (PotData0, PotDatal, PotData2, and
PotData3).

WriteBits3

This routine writes the byte stored in the accumulator by rotating the MSB into the carry bit, writing the
carry bit to DQ, and finally pulsing CLK. This is repeated a total of eight times, which writes the entire byte
to the DS1267.

ReadPots3

This routine is the master reading routine. It reads the stack control bits and stores them in the memory
locations called stackl and stack2. It also uses the ReadBits3 routine to read back the 8-bits of information
controlling each potentiometer and stores the values in the 4-bytes labeled PotData0, PotDatal, PotDataz2,
and PotData3.

ReadBits3
This routine reads the 8-bits back from the potentiometer used to store the wiper positions, converts the 8-
bits into a byte, and passes the data back to the calling procedure in the accumulator.

Other Routines
These routines each support the main communication routines by performing the function described below.

initSP1.: Initializes serial port 1.
intro: Displays a welcome message on the PC terminal via serial port 1
init3wire: Initializes the 3-Wire Bus signals (RST, DQ, CLK), and sets the values in the variables used

write to the potentiometers (stackl, stack2, PotData0O, PotDatal, PotData2, PotData3).

wit: Programmable wait function. Uses waitl6us, and registers R5, R6 and R7 to realize a delay
between 14.42 ps and 3.7 min.

waitléus: Delays 1.6 s each time called.
DisplayPots: Uses outchar and binasc to display the values read back from each potentiometer. It is not

required code for the operation of the DS1267s, but it makes it a lot easier to debug reading
problems when you can verify the data in the storage bytes is correct after a read attempt.

5 of 20

App Notel40

outchar: Places a single character into the serial port 1 buffer, then waits for the serial transmission
complete flag to be set before returning.

binasc: Converts an integer stored in the accumulator into two ASCII bytes in hexadecimal format.

outstr: Uses outchar to send null terminated strings to the PC via serial port 1. The strings sent are
stored in the message section at the very end of the code.

Main Program
The main program performs the following sequence:

Disables interrupts

Initializes serial port 1

Initializes 3-wire pins and variables

Inverts an LED located on P1.0 to signify the beginning of the program

Writes the potentiometers to the values stored during initialization

Delays 5 seconds, this is done so a multimeter can be used to determine if a read function (next)
is over-writing the potentiometers to different values

Reads the potentiometers

Displays the results

9. Begins blinking the LED, once per second to signify that the program has finished execution

ogakrwdE

o ~

Dallas Semiconductor Contact Information

Address: World Wide Web Site:

4401 S. Beltwood Parkway www. dal sem . com

Dallas, TX 75244

Tel: 972-371-4448 Ordering Information:

Fax: 972-371-4799 www. dal sem . coml pr oduct s/ or deri ng. pdf
Product Literature: FTP Site:

(972) 371-4448 ftp://ftp.dal sem .com

Sales and Customer Service: Datasheets:

(972) 371-4969 www. dal sem . com dat asheet s/ pdf i ndex. ht m

Package/Mechanical Drawings:
www. dal sem . cont dat asheet s/ nechdwg. ht

6 of 20

App Note 140

Appendix A - Code Used to Generate 3-Wire for the DS1267 Using a
DS87C520 Microprocessor

CE S bk b b S b I S bk Sk S bk Sk bk S I Rk b b b S bk b A S IRk S b ik b b b b S b b b i bk S b b Rk
l

;* DS87C520 APPS DEVELOVENT SYSTEM *
- % *
;* Application: Comrunication with a DS1267, and a PC vi a *
;* Serial Port 1. *
;***
- % *
;* This programwas created to denonstrate using a 3-Wre interface *
;* to comunicate with a DS1267 Digital Potentioneter. The program*
;* also talks to PCvia Serial Port 1 (19200 Baud). The mcro is *
:* operated using DS1075 Gscillator operating at 22.2MHz. *
* *
;* Software Revision History *
- % *
;* 1.0 01/19/01 - First try at operating a DS1267 using the *
;* generic application engineering generic 8051 *
;* boot | oadi ng board. *
* *
;* Hardware Description *
- % *
;* P1.O0 - LED PO.0 - SN74F373N *
;¥ PL.1 - PO.1 - " *
;¥ P1L.2 - RXD1 - PC PO. 2 - *
;¥ P1.3 - TXD1 - PC PO. 3 - *
;* Pl.4 - CLK PO.4 - " *
;* P1L.5 - DQ PO.5 - *
;* P1.6 - RST PO. 6 - *
;* PL.7 - COJT PO.7 - " *
,* *
;* P3.0 - RXDO - Not used P2.0 - Upper *
;* P3.1 - TXDO - Not used P2.1 - Address *
;¥ P3.2 - P2.2 - Byte *
;¥ P3.3 - p2.3 - " *
;¥ P3.4 - P2.4 - *
;* P3.5 - P2.5 - *
;¥ P3.6 - WR P2.6 - " *
;* P3.7 - RD\ P2.7 - *
,* *
;* Wndow O RO - Used for 3-wire read and wite, Do not destroy! *
;* Wndow O RL - Used for binasc routine, Do not destroy! *
;* Wndow O R5-R7 Used for tiner/scratch pad, destroy with caution! *
R R I b b b b b I R I I I b S R R S b b R R S R S I S

$include (c:\firmvare\reg520.inc) ; SFR register defs for conpiler

7 of 20

App Note 140

S b 30 20 20 0 b S S0 Sk b b b 4 Varlable DEC|aI’atI0nS %k)k *kkkhkikkikkkkk%k
:** (General Variables **
st ack equ 02Fh ; bottom of stack

: stack starts at 30h
»** DS1267 Vari abl es **

stackl bi t 000h ; Read DS1276#1 Stacked?
Pot Dat a0 equ 042h ; Wite Data DS1267#1, potO
Pot Datal equ 043h ; Wite Data DS1267#1, potl
stack?2 bi t 001h ; Read DS1267#2 St acked?
Pot Dat a2 equ 044h ; Wite Data DS1267#2, potO
Pot Dat a3 equ 045h ;. Wite Data DS1267#2, potl

kkkkkkkikkkhkk*k kkkkkkkhkkkkk*k

X SFR Decl ar ati ons
:** (General SFR Nanes **

snod_1 equ ODFh ; baud rate doubler bit declared
;** Port 1 Signal Nanmes **
LED equ 90h : P1L.O is LED
; P1.1 is not used
RX1 equ 92h ; P1.2 is Serial Port 1 RX
TX1 equ 93h P1.3 is Serial Port 1 TX
CLK equ 94h P1.4 is CLK - 3Wre
DQ equ 95h P1.51s DQ - 3Wre
RST equ 96h P1.6 is RST - 3Wre
caut equ 97h P1.7 is COUT - 3Wre

8 of 20

App Note 140

rkkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhhkkhkhkkhkkhkhkkhkhkkhkhkkhkhhkkhkhkkhkkhhkkhkhkhkkhhkhkhkhkkhhkhkkhkhkhhkkkhkhkhkk*k
1

;* Hardware Interrupt Vectors (Table on page 95 of DS dat abook) *
rhkhkhkhkhkhkhkhkhkhhhhkhkhkhhihhihk*k*k
;* No Interrupts are enabled in this code. If interrupts are to be *
;¥ enabl ed they need to have the label initialized here. *

rkkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhhkkhkhkkhkkhkhkkhkhhkkhkhkkhkhhkkhkhkkhkkhhkkhkhkkhkkhhkkhkkhkhkkhhkhkkhhkhkhkkkhkrkkhkkk*k
1

org 0000h ; Power up and Reset

ljnp start

org 0003h ; External Interrupt O

ljnp start

org 000Bh ; Timer O Interrupt

ljnmp start

org 0013h ; External Interrupt 1

ljnp start

org 001Bh ; Timer 1 Interrupt

ljnp start

org 0023h ; Serial Port O Interrupt

ljnmp start

org 002Bh ; Timer 2 Interrupt

ljnmp start

org 0033h ; PowerFail Interrupt (DS Priority 1)
ljnp start

org 003Bh ; Serial Port 1 Interrupt (DALLAS)
ljnp start

org 0043h . External Interrupt 2 (DALLAS)
ljnmp start

org 004Bh . External Interrupt 3 (DALLAS)
ljnmp start

org 0053h ; External Interrupt 4 (DALLAS)
ljnp start

org 005Bh ; External Interrupt 5 (DALLAS)
ljnmp start

org 0063h ; Wat chdog I nterrupt (DALLAS)
ljnmp start

org 006Bh ; Real -Time C ock (DALLAS)

ljnp start

9 of 20

App Note 140

rkkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhhkkhkhkkhkkhkhkkhkhkkhkhkkhkhhkkhkhkkhkkhhkkhkhkhkkhhkhkhkhkkhhkhkkhkhkhhkkkhkhkhkk*k

;**** Main Program xR xK
RE R This programtal ks to two DS1267s using 3-wire. It also ***x*
KK denonstrates reading fromthe DS1267s using a 4th pin as ****
j REEK an input fromthe Cout of the |ast DS1267. xRk x
;***
org 0080h;
start:
clr EA ; Disable Interrupts
| call initSPl ; Initialize Ser Port 1 & Tinmer 1/0
lcall intro ; Wel come Message, Serial Port 1
lcall init3wire ; Initialize 3-wire Variabl es
cpl LED ; Conplenment LED9 - ldentifies that the
; has started execution
| call WitePots3 ; Wite to the pots - wites the val ues
; stored in the RAM Il ocations by init3wre
nov R5, #255 ; set timer up for a 5.0 second del ay
nov R6, #147 ;"
nov R7, #10 ;
| cal | wt ; call tinmer function
| cal | ReadPot s3 ; read data frompots, re-wite the data
; back to the part.
| cal | Displ ayPots3 ; display the data fromthe DS1267s
endmai n:
nmov R5, #255
nov R6, #147 ; R6=255,R6=147 => R7 * 0.5 Sec
nov R7, #1 ; 0.5 Sec Del ay
| cal | wt
cpl LED ; Blink LED once per second
sjnp endmain ; Waits forever

10 of 20

App Note 140

rkkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhhkkhkhkkhkkhkhkkhkhkkhkhkkhkhhkkhkhkkhkkhhkkhkhkhkkhhkhkhkhkkhhkhkkhkhkhhkkkhkhkhkk*k

*k k%

: 3-Wre Wite Pots Routine for

s kk k%

Wit ePots3:
setb
nov
nov
setb
clr
nov
| cal |

nov
| cal |

nov
nov
setb
clr
nov
| cal |

nov
| cal |

clr
r et

DS1267s

Wites the 34 bits out to the two DS1267s
rhkkhkkhkkhkkhkkhkhkhkkhhhkhhkhkhkhkhkhkhkikikikikiki*k*
;) * requires WiteBits3 routine

;* WiteBits3 destroys the RO and A registers

CE S b b b I b I S b Sk b S S b Ik i bk b b bk Rk A S bk b b S b Ik S S Rk b bk S b b b S b b S b b S b

RST

C, stack2
DQ C

CLK

CLK

A, Pot Dat a3
WiteBits3

A, Pot Dat a2
WiteBits3

C, stackl
DQ C

CLK

CLK

A, Pot Dat al
WiteBits3

A, Pot Dat a0
WiteBits3

RST

set RST to begin data xfer
set 1267#2 stack condition=stack?2

clock 3-wire bus

noves PotData3 into A for xm ssion
call WiteBits3 to wite serial byte
out to the DS1267s

noves PotData2 into A for xm ssion
call WiteBits3 to wite serial byte
out to the DS1267s

set 1267#1 stack condition=stackl
clock 3-wire bus

noves PotDatal into A for xm ssion
call WiteBits3 to wite serial byte
out to the DS1267s

noves PotDataO into A for xm ssion
call WiteBits3 to wite serial byte
out to the DS1267s

clear RST to end data XFER

*k k%

**k k%

*

*

rkkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhhkkhkhkkhkkhhkkhkhkkkhkhkhkhhkkhkhkkhkkhkhkkhkhkkhkkhhkkhkhkhkkhhkkhkkhkhkkhkhkkhkkhhkhkkk*k

PR KX 3-Wre Wite Bits Routine for

s kk k%
s kk k%

s kk k%

;* requi

DS1267s

Wites 8 bits by toggling the DQ and the CLK pins as

required.

This is used to wite 8-bit potentioneter

val ues out to the parts

rkkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhhkkhkhkkhkkhhkkhkhkhkkhkhkkhkhhkkhkhkkhkkhhkkhkhkkhkkhhkhkhkhkkhkhkhkhkhkkhkhkkkikhkhkkk*k

res no other

routi nes,

destroys RO and A registers

* Kk k%

**k k%

**k k%

* Kk k%

*

CIE S b b b S b I b Sk S bk b b b S bk S b b b S bk b b S bk S S R R Sk bk S bk b b S b Sk S b S b ik S b b S S

WiteBits3:
nov

VB t 3:
ric
nov
setb
clr
dj nz
r et

RO, #8

A

DQ C
CLK

CLK

RO, WBit3

if all
el se return

8-bits in transfer

rotate MSB to carry bit
nov C onto DQ pin
clock 3-wire bus

8-bits not send, keep sending

11 of 20

App Note 140

rkkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhhkkhkhkkhkkhkhkkhkhkkhkhkkhkhhkkhkhkkhkkhhkkhkhkhkkhhkhkhkhkkhhkhkkhkhkhhkkkhkhkhkk*k

PR KX 3-Wre Read Pot Routine for DS1267s

*k k%

RE R Reads 34 bits of information fromthe DS1267 by using * ok kK
pRxEx ReadBits3 and by toggling the RST, DQ and the CLK pins ****
KK to read the Stack Bits as required. *ok kK
rhkhkhkhkhkhkhkhkhhkhhhkhkhhhihk*k*k
;¥ requires readbits3 routine *

; readbi t s3 destroys RO and A

rkkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhhkkhkhkkhkkhkhkkhkhkkhkhkkhkhhkkhkhkkhkkhhkkhkhkhkkhhkkhkkhkhkkhhkhkkhhkkhkhkkkhkkkkhkkk*k

ReadPot s3:
clr
clr
clr
clr
setb

Pot Dat a0
Pot Dat al
Pot Dat a2
Pot Dat a3
RST

C, cCcaJr
DQ C

stack2, C
CLK

CLK
ReadBi t s3
Pot Dat a3, A
ReadBi t s3
Pot Dat a2, A
C, caur

DQ C
stackl, C
CLK

CLK
ReadBi t s3
Pot Dat al, A
ReadBi t s3
Pot Dat a0, A
RST

*

Cl ear PotDataX registers to guarantee the
val ues di spl ayed are not the val ues
left in the registers from progranm ng

t he DS1267s

Copy CQUT into C

Wap the contents back out onto DQ .

..S0 the DS1267s wi ||
val ues after the read attenpt

copy Cinto stack2
cl ock DS1267s

read next byte

nmov Data to Storage
read next byte

nmov Data to Storage
Copy CQUT into C
Wap Data back into
copy Cinto stackl
cl ock DS1267

read next byte
nmov Data to Storage
read next byte
nmov Data to Storage

12 of 20

Byt e
Byt e

part

Byt e

Byt e

still

have t he sane

App Note 140

rkkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhhkkhkhkkhkkhkhkkhkhkkhkhkkhkhhkkhkhkkhkkhhkkhkhkhkkhhkhkhkhkkhhkhkkhkhkhhkkkhkhkhkk*k

*k k%

; 3-Wre Read Bits Routine for
RE R Reads 8 bits by toggling the DQ and the CLK pins as
This is used to read the 8-bit potentioneter ****

*k k%

; required.

*k k%

X val ues fromthe parts

*k k%

DS1267s

**k k%

* Kk k%

rkkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhhkkhkhkkhkkhkhkkhkhhkkhkhkkhkhhkkhkhkkhkkhhkkhkhkkhkkhhkkhkkhkhkkhhkhkkhhkhkhkkkhkrkkhkkk*k

;¥ requi res no other routines *
;¥ destroys RO and A registers *
;***
ReadBi t s3:

nov RO, #8 ; 8-bits in transfer
RBi t 3:

nov C, COUT ; mov COUT into C

nov DQ C ; Wite COUT onto DQ - Wap Data back into part

rlc A . rotate carry bit to MSB of A

setb CLK ; clock 3-wire bus

clr CLK ;

djnz RO, RBit3 ; if all 8-bits not send, keep sending

ret el se return

CE I bk b b S b I S b S R Sk S bk b b b Ik i bk S b b b S bk b b S bk S S Rk b Sk S b Sk b b i b ik S b S b Sk S b b b

; * k k% D‘ Spl ay D81267 Pot S Rout i ne * k k%
PRk kK Di spl ays the value of the registers used for all 4 FAR I
* *k k% * k% k%

: Di

gital

Pot enti onmeters using seri al

port 1

rkkhkkhkhkkhkhkkhkhkhkkhkhkkhkkhkhkkhkhkhkkhkhkkhkhhkkhkhkkhkhhkkhkhkkhkkhhkkhkhkkkhhkhkhhkkhkhkkhkkhhkkhkkhkkkhhkkhkkhkhkkhhkkhkhkhkhhkkkhkhrkkhkkk*k

*

; requi res binasc and outchar,

*

outstr routines

CE S b b b S b I S b S R Sk S bk b b b Ik i bk S b b b S bk b b S b I S b S R IR R S S b b b S b Sk S b bk S b b b 4

Di spl ayPot s3:

jb
nov
| cal |
nov
| cal |
sj np
st kd1:
nov
| cal |
nov
| cal |
next 1:
nov
| cal |
| cal |
nov
| cal |
nov
| cal |
nov
| cal |
| cal |
nov

stackl,
A # N
out char
A # '
out char
next 1

A # S
out char
A #
out char

A, Pot Dat a0
bi nasc

out char

A Rl

out char

A #

out char

A, Pot Dat al
bi nasc

out char

A R1

st kdl :

if not stacked then wite "N "

X else wite "S "

; nove data read from RAM @otData0 to A
; convert data frombin to asci

; send first byte via Ser. Portl

; mov 2nd conversion byte from R1>A

; send second byte via Ser. Portl

; send Space via Ser. Portl

; Move data read from RAM @otDatal to A

; convert data frombin to asci

; send first byte via Ser. Portl

; mov 2nd conversion byte from RL>A
13 0f 20

App Note 140

st kd2:

next 2:

out char

A #

out char
stack2, stkd2
A # N

out char

A #

out char

next 2

A # S
out char
A #

out char

A, Pot Dat a2
bi nasc

out char

A RL

out char

A #

out char

A, Pot Dat a3
bi nasc

out char

A Rl

out char
DPTR, #mess?2
out str

send second byte via Ser. Port
send Space via Ser. Portl

if not stacked then wite "N "

else wite "S "

1

Move data read from RAM @otData2 to A

convert data frombin to asci
send first byte via Ser. Portl

nov 2nd conversion byte from R1>A

send second byte via Ser. Port
send Space via Ser. Portl

1

Move data read from RAM @otData3 to A

convert data frombin to asci
send first byte via Ser. Portl

nov 2nd conversion byte from R1>A

send second byte via Ser. Port
send (2)LF and (2)CR via Ser.

14 of 20

1
Port1l

App Note 140

rkkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhhkkhkhkkhkkhkhkkhkhkkhkhkkhkhhkkhkhkkhkkhhkkhkhkhkkhhkhkhkhkkhhkhkkhkhkhhkkkhkhkhkk*k

pREEE 3-Wre Init Routine for DS1267 *okk ok
R R K Initializes 3 wire pin val ues * ok ok ok
;***
;¥ requi res no additional routines *
;* destroys no registers *
;***
init3wre:

clr RST ; clear reset pin

clr CLK ; clear clock pin

clr DQ ; clear data pin

nov Pot Dat a0, #0CDh . set #1, Sout to 2V, 205d if not stackl

nov Pot Dat al, #99h . set #1, Sout to 4V, 153d if stackl

setb stackl . set #1, stack on, set SOQUT to 4V

nov Pot Dat a2, #66h ; set #2, potO to 2V, 102d

nov Pot Dat a3, #99h ; set #2, potl to 3V, 153d

setb stack?2 . set #2, stack on

ret

rkkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhhkkhkhkkhkkhhkkhkhhkkhkhkkhkhhkkhkhkkhkkhhkkhkhkkhkkhhkkhkkhkhkkhkhkhkkhkhkhhkkhkkhhkhkkk*k
H

pREEH Wi t 1.6 us Functi on
*k k%

RE R Wastes 1.6us of processor tine with call, nop and return ****
rhkkhkkhkkhkkhkkhkhkhkhhhhhkhhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhkhkhkhkhkhkhkikhkikikik*k*
;* Requires no other routines or registers *
rhkhkhkhkhkhkhkhkhkhkhhhkhhkhhihihihh*k*k
wai t 16us:

nop ;1 nops @cc each + lcall @e6cc + ret @6cc

; produces approximately 1.6us of delay with a
; 22.22MHz cl ock
ret

15 of 20

App Note 140

rkkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhhkkhkhkkhkkhkhkkhkhkkhkhkkhkhhkkhkhkkhkkhhkkhkhkhkkhhkhkhkhkkhhkhkkhkhkhhkkkhkhkhkk*k

s kk k%

s kk k%

s kk k%

Initialize Seri al

Set up serial
Uses tiner

1 for

Port 1 for
port 1 for use with a 22.1 MHz crystal

PC interface

19200 baud, Mode 1

CE S b b b S b I S b S Sk S b S Ik i bk b b bk S I R bk bk S b Sk S b S b b S b b b i bk b b S b I R IR Sk S b bk

*k k%

**k k%

*k k%

*

CE S b b b I b I S b Sk b S S b Ik i bk b b bk Rk A S bk b b S b Ik S S Rk b bk S b b b S b b S b b S b

; enabl e
; Seri al

: MBB- T1
: LSB- TO

:t1/0 enabl ed,

; set t

baud rate doubl er
Port 0 asynch, 10 bits

on and in 16-bit count node
TO is free running 2"16cc
overflow rate (35.59mn8)

not using ext int
edge/ | evel
flag/reg

1 reset val / baud rate=19200

;* Uses no other routines or registers
ni t SP1:

setb snod 1

nov SCON1, #50h

nov TMOD, #21H

nov TCON, #50H

nov TH1, #OFAH

ret

sel ect and det ect

on and in 8bit auto-l| oad-nopde

CE I bk b b S b I S b S R Sk S bk b b b Ik i bk S b b b S bk b b S bk S S Rk b Sk S b Sk b b i b ik S b S b Sk S b b b

s kk k%

s kk k%

Intro D splay Message Routi ne
Sends out a greeting nessage

CIE S b b b S b I S b Sk R Sk S bk b b b S Rk i bk S b b S Rk bk S bk S b S b Sk S R S S bk b b i b Sk S b i bk S b b S

D x Uses outstr function
;x Destroys DPTR

* Kk k%

* k%%

*

*

CE S b b b S b I S b S R Sk S bk b b b Ik i bk S b b b S bk b b S b I S b S R IR R S S b b b S b Sk S b bk S b b b 4

ntro:

nov
| cal |
nov
| cal |
nov
| cal |
nov
| cal |
nov
| cal |
nov
| cal |
ret

DPTR, #nessl
outstr
DPTR,
out str
dptr,
outstr
DPTR,
outstr
DPTR,
out str
DPTR,
out str

#ness?2

#mess3

#nmess?2

#ness4

#ness?2

; send
; send
; send
; send
; send

:send

wel conme nessage

(2) CR and (2) LF
application specific nessage
(2) CR and (2) LF

read header

(2) CR and (2) LF

16 of 20

App Note 140

rkkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhhkkhkhkkhkkhkhkkhkhkkhkhkkhkhhkkhkhkkhkkhhkkhkhkhkkhhkhkhkhkkhhkhkkhkhkhhkkkhkhkhkk*k

pREEH Qutstring Routine - Serial Port 1 xR xK
RE R wites a null termnated string to PCvia Ser. Port 1 * ok kK
rhkkhkkhkkhkkhkkhkhkhkkhhhkhhkhkhkhkhkhkhkikikikikiki*k*
;* Uses outchar routine *

*

;* Destroys dptr and A

CE S b b b I b I S b Sk b S S b Ik i bk b b bk Rk A S bk b b S b Ik S S Rk b bk S b b b S b b S b b S b

outstr:
clr A X
nmovc A, @GA+DPTR
jz exitstr ;
| cal l out char :
i nc dptr ;
sj np outstr ;
exitstr:
ret

clear A to get data
get data fromstring at data pointer
if data zero, eos
el se send character
i ncrenent data pointer
continue, zero condition will term nate

CIE S b b b S b I S bk Sk S b Sk i b Ik I Rk b S b b S bk b b S bk S S SRR b b S b b b S b Sk S b bk S b b b

pREEx Qutchar routine - Serial Port 1 koK kk
RE R wites character in Acc to the PC via serial port 1 * oKk ok
;***
p* Uses no routines or registers *
;***
out char:

nov SBUF1, A ; place Ainto Serial Port 1 Buffer
wai t char :

jnb SCON1.1, waitchar ; wait buffer enpty flag is set

clr SCONL. 1 ; clear buffer enpty flag

ret

17 of 20

App Note 140

rkkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhhkkhkhkkhkkhkhkkhkhkkhkhkkhkhhkkhkhkkhkkhhkkhkhkhkkhhkhkhkhkkhhkhkkhkhkhhkkkhkhkhkk*k

conversion routine

*k k%

; Binary to Asci

**k k%

; Converts a binary nunber in Acc to 2 asci

D x Uses no routines

;) * Destroys A and Rl

CIE S b b b S b I S b S Sk S bk Sk i bk S S Rk S b b b S bk b b S b Ik S R Rk b b S b Sk b b S b Sk S b S bk S b b S 4

bi nasc:

nov

anl

add

j nc

add
noadj 1:

add

xch

swap

anl

add

j nc

add
noadj 2:

add

ret

save nunber

convert
adj ust
if a-f

in R1

digits
;**** Leaves results in A (upper digit) and RL (lower digit)

CE S b b b S b I S b S Sk S b S Ik i bk b b bk S I R bk bk S b Sk S b S b b S b b b i bk b b S b I R IR Sk S b bk

| east significant digit

it
r eadj ust

R1, A ;
A, #OFh ;
A, #0F6h
noadj 1 ;
A, #07h ;
A, #3Ah
A RL ;
A
A, #O0Fh ;
A, #0F6h
noadj 2 ;
A, #07h
A, #3ah

make asci
put result

convert
adj ust
if a-f

it

make asci

in regl

r eadj ust

| east significant digit

*k k%

**k k%

*k k%

*

*

CE S b b b S b I S b S R Sk S bk b b b Ik i bk S b b b S bk b b S b I S b S R IR R S S b b b S b Sk S b bk S b b b 4

**k k%

X Cener al

s kk k%

s kk k%

s kk k%

s kk k%

Wait Function
Can wait anywhere between
VWits R7 * 867.6 ns if RS
Wiits R6 * 3.4 s
Waits RS *

13. 34us

= R6 = 255
if RS = 255 and R7 =
if R6 =R7 =1

1

14. 42us to 221 sec.

**k k%

*k k%

* Kk k%

** k%

* Kk k%

CIE S b b b S b I bk bk b b b I Ik i bk S b i b S bk b b S b I R Rk b b b b S b b b i b Sk S b S b ik S b b S 1

;x requi res waitléus routine
;¥ destroys registers R5, R6 and R7

rkkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhhkkhkhkkhkkhkhkkhkhkhkkhhkkhkhhkkhkhkkhkkhhkkhkkhkkhkkhhkkhkkhkhkkhhkkhkkhkkhkhkkkhkhkkhkkk*k

W .

| call waitl6us
I call waitl6us
I call waitl6us
| call waitl6us
I call waitl6us
| call waitl6us
| call waitl6us
I call waitl6us
djnz R5, wt
djnz R6, wt
dinz R7, wt
ret

12. 8us of waits

if RS

;Wait = RS * 13.34us + 1.1us if R6
Wit = R6 * 3. 4ns
Wit = R7 * 867.6ns

if RS

Rr =1
255, R7
R6 = 255

*

*

=1

rkkhkkhkhkkhkhkkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkkhkhkkhkhkkkhkhkkhkhkhkkhkhkkhkhhkkhkhkkhkkhkhkkhkhhkkhkhkkhkkhhkkhkkhkhkkhkhkkhkkhkhkkhkkhkkhkkhkhkkhkkhkkk*k

18 of 20

App Note 140

s kk k% * * % %
; MESSAGES
rhkkhkkkhkkhkkhkkhkhkkhkhkhhhhhhkkhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhkhkhkhkhkhkhkikhkikikikik**
)

org 8000h

nmessl: db 'Jason''s Proto-board, Rev. 0.2',0Dh, OAh
db ' Now uses a DS1075 for a clock, and a DS1267', O0Dh, OAh
db 'for a 3-Wre Denpnstration.', O

mess2: db ODh, OAh, ODH, OAH, O
nmess3: db 'This programtalks via a 3-wire interface', ODh, OAh
db 'to a DS1267, and uses serial port 1 to', ODh, OAh

db 'comrunicate with the user', 0

mess4: db ' -POT#1- -POT#2-', 0Dh, OAh, ODh, OAh,

db 'S S , ODh, 0Ah
db 't t , ODh, OAh
db 'k k' , ODh, 0Ah

db "1 PO P1L 2 P2P3,0

END ; End of program

19 of 20

App Note 140

Appendix B — Output Of The DS1267 Program

Jason's Proto-board, Rev. 0.2
Now uses a DS1075 for a clock, and a DS1267
for a 3-Wre Denopnstration.

This programtalks via a 3-wire interface
To a DS1267, and uses serial port 1 to
conmmuni cate with the user

- POT#1- - POT#2-

()]

PX =W

t
k
PO P1 2 P2 P3

S CD 9 S 66 99

20 of 20

